Specifications Table for EWAD-E-SS

EWAD100E-SS EWAD120E-SS EWAD140E-SS EWAD160E-SS EWAD180E-SS EWAD210E-SS EWAD260E-SS EWAD310E-SS EWAD360E-SS EWAD410E-SS
Cooling capacity Nom. kW 101 (1) 121 (1) 138 (1) 163 (1) 183 (1) 213 (1) 255 (1) 306 (1) 359 (1) 411 (1)
Capacity control Method   Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless Stepless
  Minimum capacity % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0
Power input Cooling Nom. kW 39.1 (1) 47.5 (1) 53.9 (1) 60.9 (1) 69.0 (1) 72.4 (1) 87.8 (1) 112 (1) 134 (1) 147 (1)
EER 2.58 (1) 2.54 (1) 2.55 (1) 2.67 (1) 2.64 (1) 2.95 (1) 2.90 (1) 2.73 (1) 2.67 (1) 2.80 (1)
ESEER 2.84 2.83 2.66 2.84 2.73 2.93 3.08 2.96 3.13 3.24
Dimensions Unit Depth mm 2,165 2,165 3,065 3,065 3,965 3,965 3,070 3,070 3,070 3,070
    Height mm 2,273 2,273 2,273 2,273 2,273 2,273 2,223 2,223 2,223 2,223
    Width mm 1,292 1,292 1,292 1,292 1,292 1,292 2,236 2,236 2,236 2,236
Weight Operation weight kg 1,699 1,699 1,881 1,881 2,116 2,116 2,963 2,963 2,963 2,963
  Unit kg 1,684 1,684 1,861 1,861 2,086 2,086 2,919 2,919 2,919 2,919
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger
  Water volume l 12 15 17 20 24 30 25 30 36 44
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler
Fan Air flow rate Nom. l/s 10,924 10,576 16,386 15,865 21,848 21,153 32,772 32,772 31,729 31,729
  Speed rpm 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   1 1 1 1 1 1 1 1 1 1
  Type   Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor Asymmetric single screw compressor
Sound power level Cooling Nom. dBA 92 92 92 92 93 94 94 94 94 95
Sound pressure level Cooling Nom. dBA 74 (2) 74 (2) 74 (2) 74 (2) 74 (2) 75 (2) 75 (2) 75 (2) 75 (2) 76 (2)
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   1 1 1 1 1 1 1 1 1 1
Charge Per circuit kg 18.0 21.0 23.0 28.0 34.0 39.0 46.0 46.0 56.0 74.0
  Per circuit TCO2Eq 25.7 30.0 32.9 40.0 48.6 55.8 65.8 65.8 80.1 105.8
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta Wye-Delta
Notes (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (2) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (3) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 % (4) - Maximum starting current: starting current of biggest compressor + 75 % of maximum current of the other compressor + fans current for the circuit at 75 %
  (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (5) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (6) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage. (7) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (8) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water (9) - Fluid: Water
  (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (10) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (11) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.